#Acosta, I., Campano, M. Á., Leslie, R., & Radetsky, L. (2019). Daylighting design for healthy environments: Analysis of educational spaces for optimal circadian stimulus.
Solar Energy, 193, 584-596.
https://doi.org/10.1016/j.solener.2019.10.004
Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2015). Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort.
Sustainability, 7(8), 10809-10836.
https://doi.org/10.3390/su70810809
Bahdad, A., Syed Fadzil, S., & Taib, N. (2020). Optimization of Daylight Performance Based on Controllable Light-shelf Parameters using Genetic Algorithms in the Tropical Climate of Malaysia.
Journal of Daylighting, 7, 122-136.
https://dx.doi.org/10.15627/jd.2020.10
Bahdad, A. A. S., Fadzil, S. F. S., Onubi, H. O., & BenLasod, S. A. (2021). Sensitivity analysis linked to multi-objective optimization for adjustments of light-shelves design parameters in response to visual comfort and thermal energy performance.
Journal of Building Engineering, 44, 102996.
https://doi.org/10.1016/j.jobe.2021.102996.
Bakmohammadi, P., & Noorzai, E. (2020). Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants’ thermal and visual comfort.
Energy Reports, 6, 1590-1607.
https://doi.org/10.1016/j.egyr.2020.06.008
Berardi, U., & Anaraki, H. K. (2015). Analysis of the Impacts of Light Shelves on the Useful Daylight Illuminance in Office Buildings in Toronto. Energy Procedia, 78, 1793-1798.
https://doi.org/10.1016/j.egypro.2015.11.310
Berardi, U., & Anaraki, H. K. (2016). The benefits of light shelves over the daylight illuminance in office buildings in Toronto.
Indoor and Built Environment, 27(2), 244-262.
https://doi.org/10.1177/1420326X16673413
Ebrahimi-Moghadam, A., Ildarabadi, P., Aliakbari, K., Arabkoohsar, A., & Fadaee, F. (2020). Performance analysis of light shelves in providing visual and thermal comfort and energy savings in residential buildings.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42. https://doi.org/
10.1007/s40430-020-02565-2
Ebrahimi-Moghadam, A., Ildarabadi, P., Aliakbari, K., & Fadaee, F. (2020). Sensitivity analysis and multi-objective optimization of energy consumption and thermal comfort by using interior light shelves in residential buildings.
Renewable Energy, 159, 736-755.
https://doi.org/10.1016/j.renene.2020.05.127.
Fadaii Ardestani, M. A., Nasseri Mobaaraki, H., Ayatollahi, M. R., & Zomorrodian, Z. S. (2018). The Assessment of Daylight and Glare in Classrooms Using Dynamic Indicators; the Case of SBU Faculty of Architecture and Urban Planning. Soffeh, 28(4), 25-40. https://soffeh.sbu.ac.ir/article_100759.html?lang=en.[in Persian].
Heschong, L. (2003).
Windows and Classrooms: A Study of Student Performance and the Indoor Environment: California Energy Commission, 2003.https://doi.org/
10.13140/RG.2.2.26759.44964
Joarder, P., Ahmed, Z., Price, A., & Mourshed, M. (2009). A simulation assessment of the height of light shelves to enhance daylighting quality in tropical office buildings under overcast sky conditions in Dhaka, Banlgadesh. https://www.researchgate.net/publication/48354594_A_simulation_assessment_of_the_height_of_light_shelves_to_enhance_daylighting_quality_in_tropical_office_buildings_under_overcast_sky_conditions_in_Dhaka_Banlgadesh.
Khanmohamadi, M., Pourahmadi, M., & Mozaffar, F. (2019). Windows optimization based on the glare performance in educational building of Iran hot and dry climate. Journal of Sustainable Architecture and Urban Design, 7(1), 113-128. https://jsaud.sru.ac.ir/article_1158.html?lang=en[in Persian].
Keshtkar Ghalati, A., & Ahmadian, M. (2024). Effects of Window and Light Shelve Configurations on Energy Consumption and Daylight Illuminance in Classrooms.
Renewable Energy Research and Applications, 5(1), 107-119. https://doi.org/
10.22044/rera.2023.12563.1194.
Kontadakis, A., Tsangrassoulis, A., Doulos, L., & Zerefos, S. (2018). A Review of Light Shelf Designs for Daylit Environments.
Sustainability, 10(1), 71.
https://doi.org/10.3390/su10010071.
Li, M., Zheng, J., & Wu, J. (2008).
Improving NSGA-II Algorithm Based on Minimum Spanning Tree (Vol. 5361).https://doi.org/
10.1007/978-3-540-89694-4_18.
Mahdavinejad, M., Tahbaz, M., & Dolatabadi, M. (2016). Optimization of Properties and Light Shelf System in Architecture of Learning Building. Journal of Fine Arts: Architecture & Urban Planning, 21(2), 81-92. https://jfaup.ut.ac.ir/article_60164.html?lang=en.[in Persian].
Mangkuto, R. A., Feradi, F., Putra, R. E., Atmodipoero, R. T., & Favero, F. (2018). Optimisation of daylight admission based on modifications of light shelf design parameters.
Journal of Building Engineering, 18, 195-209.
https://doi.org/10.1016/j.jobe.2018.03.007
Mangkuto, R. A., Rohmah, M., & Asri, A. D. (2016). Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics.
Applied Energy, 164, 211-219
. https://doi.org/10.1016/j.apenergy.2015.11.046
Mangkuto, R. A., Siregar, M. A. A., Handina, A., & Faridah. (2018). Determination of appropriate metrics for indicating indoor daylight availability and lighting energy demand using genetic algorithm.
Solar Energy, 170, 1074-1086.
https://doi.org/10.1016/j.solener.2018.06.025
Moazzeni, M. H., & Ghiabaklou, Z. (2016). Investigating the Influence of Light Shelf Geometry Parameters on Daylight Performance and Visual Comfort, a Case Study of Educational Space in Tehran, Iran.
Buildings, 6(3), 26.
https://doi.org/10.3390/buildings6030026.
Moazzeni, M. H., & Ghiabaklou, Z. (2016). Investigating the Influence of Light Shelf Geometry Parameters on Daylight Performance and Visual Comfort, a Case Study of Educational Space in Tehran, Iran.
Buildings, 6(3).
https://doi.org/10.3390/buildings6030026
Mohammadjavad, M., Mansooreh, T., & Mahnaz, D. (2016). Optimization of Properties and Light Shelf System in Architecture of Learning Building. HOnar - ha - ye - ziba Memari - va - shahrsazi, 21(2), 81-92.https://jfaup.ut.ac.ir/article_60164.html?lang=en .[in Persian].
Najafi, G. s., Gorji Mahlabani, Y., & Pilechiha, P. (2023). Sensitivity analysis and optimization of building geometry with energy-daylight efficiency approach. journal of Sustainable Architecture and Urban Design, 11(1), 45-58. https://jsaud.sru.ac.ir/article_1799.html?lang=en.[in Persian].
Nasiri, b. s., & zarandi, M. m. (2020). Achieving the Principles of High Performance of Light Shelves Design in Educational Buildings. Journal of Environmental Science and Technology, 2(22), 359-369. https://sanad.iau.ir/en/Article/837011.[in Persian].
Pilechiha, P. (2020). Optimization Methods and Algorithms in Architectural and Urban Design, Basic Mathematical Solutions. Naqshejahan- Basic studies and New Technologies of Architecture and Planning, 10(3), 205-217. https://bsnt.modares.ac.ir/article-2-42128-en.html.[in Persian].
Pilechiha, P., Mahdavinejad, M., Pour Rahimian, F., Carnemolla, P., & Seyedzadeh, S. (2020). Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency.
Applied Energy, 261, 114356.
https://doi.org/10.1016/j.apenergy.2019.114356
Province, M. D. o. I. (2016). Retrieved from https://esfahanmet.ir/Researchese.
R.C. Picker, J. (2017). Radiance Color Picker Retrieved from http://www.jaloxa.eu/resources/radiance/colour_pic
Rafati, N., Sanaieian, H., & Faizi, M. (2021). Comparison of different louver configurations for daylight and energy optimization in Bandar Abbas and Tabriz. Journal of Fine Arts: Architecture & Urban Planning, 26(3), 71-84. https://jfaup.ut.ac.ir/article_86391.html.[in Persian].
Sabbagh, M., Mandourah, S., & Hareri, R. (2022). Light Shelves Optimization for Daylight Improvement in Typical Public Classrooms in Saudi Arabia.
Sustainability, 14(20), 13297.
https://doi.org/10.3390/su142013297
Salahsoor, Z., & Zarandi, M. M. (2023). The Effect of the Performance of the Optical Shelf (External) in Creating a Comfortable Environment in Architectural Studios in Latitude 35. Journal of Space and Place Studies, 1(3), 91-102.https://sanad.iau.ir/en/Article/1079648?FullText.[in Persian].
Shafavi, N. S., Tahsildoost, M., & Zomorodian, Z. S. (2020). Investigation of illuminance-based metrics in predicting occupants’ visual comfort (case study: Architecture design studios).
Solar Energy, 197, 111-125.
https://doi.org/10.1016/j.solener.2019.12.051.
ANSl/ASHRAE/IES Standard 90.1-2022:“Energy Standard for Buildings except Low-Rise Residential Buildings, SI Edition”. American Society of Heating, Refrigerating and Air-Conditioning Engineers. Atlanta, GA. https://nclose.us.com/wp-content/uploads/2024/02/ASHRAE-90.1-2022-.pdf
Tabadkani, A., Roetzel, A., Li, H. X., & Tsangrassoulis, A. (2020). A review of automatic control strategies based on simulations for adaptive facades.
Building and Environment, 175, 106801.
https://doi.org/10.1016/j.buildenv.2020.106801.
Tabadkani, A., Roetzel, A., Li, H. X., & Tsangrassoulis, A. (2021). Daylight in Buildings and Visual Comfort Evaluation: the Advantages and Limitations.
Journal of Daylighting, 8, 181-203. https://doi.org/
10.15627/jd.2021.16.
Wortmann, T., & Natanian, J. (2020). Multi-Objective Optimization for Zero-Energy Urban Design in China: A Benchmark.https://www.researchgate.net/publication/341592609_Multi-Objective_Optimization_for_Zero-Energy_Urban_Design_in_China_A_Benchmark.
Wright, J., Brownlee, A., Mourshed, M., & Wang, M. (2013). Multi-objective optimization of cellular fenestration by an evolutionary algorithm.
Journal of Building Performance Simulation, 7, 33-51. https://doi.org/
10.1080/19401493.2012.762808.
Zazzini, P., Romano, A., Lorenzo, A., Portaluri, V., & Crescenzo, A. (2020). Experimental Analysis of the Performance of Light Shelves in Different Geometrical Configurations Through the Scale Model Approach.
Journal of Daylighting, 7, 37-56. https://doi.org/
10.15627/jd.2020.4
Ziaee, N., & Vakilinezhad, R. (2022). Multi-objective optimization of daylight performance and thermal comfort in classrooms with light-shelves: Case studies in Tehran and Sari, Iran.
Energy and Buildings, 254, 111590.
https://doi.org/10.1016/j.enbuild.2021.111590#